ترجمه مقاله روش یادگیری فازی Q برای هدایت کردن ربات خودکار

دسته: کامپیوتر

حجم فایل: 956 کیلوبایت

تعداد صفحه: 14

روش یادگیری فازی Q برای هدایت کردن ربات خودکار

خلاصه- الگوریتم پیشنهاد داده شده مزیت هایی را از روش منطق فازی جفت شده و یادگیری Q برای برآورده ساختن نیازهای مربوط به هدایت کردن خودکار دریافت کرده است. سپس قوانین فازی یک تصمیم گیری و یک چارچوب کاری قابل قبول را برای مدیریت کردن عدم اطمینان ها فراهم می سازد و همچنین اجازه استفاده کردن از دانش سلسله واری را نیز می دهد. ساختار دینامیکی مربوط به یادگیری Q آن را به صورت یک ابزار متعهد در آورده است که تنظیم کننده پارامترهای تداخل فازی در زمانی است که دانش کمی در این زمینه وجود دارد یا اصلا وجود ندارد که در این صورت در سراسر دنیا در دسترس می باشد. ربات در سر تا سر دنیا به صورت مجموعه ای از جفت ها با فعالیت حرکتی مدل شده است. برای هر وضعیت فازی شده، برخی از فعالیت های پیشنهاد داده شده وجود دارد. وضعیت ها مرتبط با فعالیت های منطبق آن ها از طریق قوانین فازی می باشد که خود براساس استدالال انسانی هستند. ربات فعالیت تحریک شده بیشتری را برای هر وضعیت از طریق آزمایش های آنلاین انتخاب می کند. کارایی مربوط به روش پیشنهاد داده شده از طریق آزمایش هایی براساس ربات شبیه سازی شده Khepera موجود می باشد.

کلمات کلیدی: یادگیری Q فازی- هدایت کردن خودکار- ربات Khepera

خرید

مطالب مرتبط


برنامه توسعه تولید و انتقال، با در نظر گرفتن حد بارگذاری با استف

  • عنوان لاتین مقاله: Transmission and Generation Expansion Planning Considering Loadability Limit Using Game Theory ANN
  • عنوان فارسی مقاله: برنامه توسعه تولید و انتقال، با در نظر گرفتن حد بارگذاری با استفاده از نظری? گیم و شبکه عصبی مصنوعی.
  • دسته: برق و الکترونیک
  • فرمت فایل ترجمه شده: WORD (قابل ویرایش)
  • تعداد صفحات فایل ترجمه شده: 21
  • ترجمه سلیس و روان مقاله آماده خرید است.

خلاصه

در این مقاله برنام? توسع? تولید و انتقال (TEF , GEP) با در نظرر گرفتن حد بارگذاری سیستم قدرت مطالعه شده است. از روش شبکه های عصبی مصنوعی (ANN) برای ارزیابی حد بارگذاری سیستم قدرت به دلیل ویژگی های حساسیتش استفاده شده است. بازسازی سیستم قدرت و جداسازی سازمان های تصمیم گیرند? توسع? تولید و انتقال، هماهنگی میان شرکت های تولید و انتقال را حیاتی تر ساخته است. از دیگر سو، پایداری ولتاژ، یکی از مشخصه های سطح امنیتی سیستم قدرت می باشد. در این مقاله، نخست الگوی بار یک سیستم قدرت 6-شینه توسعه یافته، و سپس با استفاده از مشخصه های حساسیت ANN بهترین شین برای افزایش بار، تعیین می شود. آنگاه، ارتباط متقابل استراتژیکی میان شرکت انتقال (trasco) و شرکت تولید (GenCo) برای TEP و GEP در یک بازار برق رقابتی با استفاده از تیوری گیم (GT) ارایه می شود. الگوریتم ارایه شده از سه مرحل? بهینه سازی برای تعیین تعادل نش بطوری که سودمندترین روش برای هردو سوی گیم در یک گیم برنامه ریزی توسعه، یافتنی باشد تشکیل می شود.

کلمات کلیدی: برنامه توسعه تولید، برنامه توسعه انتقال، نظریه گیم، حد بارگذاری و شبکه عصبی مصنوعی

مقدمه

بازسازی و بازتنظیم سیستم قدرت، چالش های تازه ای را به برنامه ریزی سیستم قدرت اعمال می کند. در یک بازار توان انحصاری، تصمیم گیرنده تنها یک بنیادیست که می تواند در مورد برنام? توسع? تولید (GEP) و برنام? توسع? انتقال (TEP) ، تصمیم بگرید. بدلیل ایجاد شدن رقابت در بازار برق، بهتر است که تصمیم گیرنده های TEP و GEP جدا شوند؛ بطوری که شرکت انتقال (TrasCo) برای TEP و شرکت تولید (GenCo) برای GEP تصمیم گیری کند. در چنین محیطی، هماهنگی میان این دو نهاد حیاطی تر می شود؛ زیرا هر توسع? ظرفیت می تواند به دیگری اثر گذاشته و در نتیجه سود هر شرکت می تواند به طور وابسته، تحت تاثیر قرار گیرد.

  • فرمت: zip
  • حجم: 1.35 مگابایت
  • شماره ثبت: 411

خرید

مطالب مرتبط


ترجمه مقاله « تابع هدف جدیدConvex برای آموزشSupervised شبکه های

دسته: برق

حجم فایل: 1269 کیلوبایت

تعداد صفحه: 26

« تابع هدف جدیدConvex برای آموزشSupervised شبکه‌های عصبی تک لایه‌‌‌»:

چکیده: در این مقاله روش آموزشSupervised جدید برای ارزیابی چگونگی شبکه‌های Feed Forward عصبی تک‌لایه ارائه می‌شود. این روش از تابع‌هدفی بر مبنایMSE استفاده می‌کند، که خطاها را به جای این‌که پس ازActivation Function غیرخطی نرون‌ها ارزیابی کند قبل از آن‌ها بررسی می‌کند. در این گونه موارد، راه‌حل را می‌توان به سهولت از طریق حل معادلات در سیستم‌های خطی به‌دست آورد یعنی در این روش نسبت به روش‌های معین و مرسوم پیشین به محاسبات کمتری نیاز است. تحقیقات تئوری شامل اثبات موازنه‌های تقریبی بینGlobal Optimum تابع هدف بر مبنای معیارMSE و یک تابع پیشنهادی دیگر می‌باشد. بعلاوه مشخص شده است که این روش قابلیت توسعه و توزیع آموزش را دارا می‌باشد. طی تحقیقات تجربی جامع نیز تنوع صحت در انرمان این روش مشخص شده است. این تحقیق شامل 10 دسته‌بندی ((Classificationو 16 مسئله‌ی بازگشتی می‌باشد. بعلاوه، مقایسه‌این روش با دیگر الگوریتم‌های آموزشی با عملکرد بالا نشان می‌دهد که روش مذکور بطور متوسط بیشترین قابلیت اجرایی را داشته و به حداقل محاسبات در این روش نیاز می‌باشد.

پروژه کارشناسی ارشد برق

شامل

1. اصل مقاله الزیویر 9 صفحه

2. فایل ورد ترجمه 26 صفحه

خرید

مطالب مرتبط


الگوریتم بهینه سازی ازدحام ذرات (PSO)

  • عنوان لاتین مقاله: An Analysis of Particle Swarm Optimizers
  • عنوان فارسی مقاله: تجزیه و تحلیل الگوریتم بهینه سازی ازدحام ذرات (PSO)
  • دسته: مهندسی صنایع
  • فرمت فایل ترجمه شده: WORD (قابل ویرایش)
  • تعداد صفحات فایل ترجمه شده: 11
  • ترجمه سلیس و روان مقاله آماده خرید است.

خلاصه

بسیاری از مسائل علمی، مهندسی و اقتصادی شامل بهینه سازی مجموعه ای از پارامترها می باشد. این مسائل شامل نمونه هایی همچون به حداقل رسانی اتلاف در شبکه برق با یافتن تنظیمات بهینه بخش ها، یا تقویت شبکه عصبی برای تشخیص تصویر چهره افراد می باشد. الگوهای بهینه سازی بیشماری مطرح شده اند تا به حل این مشکلات، با درجلت مختلفی از موفقیت بپردازند. بهینه سازی ازدحام ذرات (PSO) تکنیک نسبتا جدیدی می باشد که به صورت تجربی نشان داده شده است که دارای عملکرد خوبی بر روی بسیاری از این مسائل بهینه سازی می باشد. این مقاله مدل نظری را ارائه می دهد که می تواند برای شرح رفتار بلندمدت الگوریتم مورد استفاده قرار گیرد. نسخه پیشرفته بهینه کننده ازدحام ذرات ایجاد شده و نشان داده شده که دارای همگرایی تضمین شده ای بر روی سطح محلی می باشد. این الگوریتم رو به توسعه بوده، که منجر به الگوریتم هایی با همگرایی تضمین شده در سطح جهانی شده است. مدلی برای ایجاد الگوریتم های PSO مشترک ایجاد شده است، که منتهی به معرفی دو الگوریتم مبتنی بر PSO جدید شده است. شواهد تجربی نیز ارائه شده تا به پشتیبانی از خصوصیات نظری پیش بینی شده توسط مدل های مختلف، با استفاده از فعالیت های مبنا ترکیبی برای بررسی مشخصه های ویژه بپردازد. سپس الگوریتم های مختلف مبتنی بر PSO، در مورد فعالیت تقویت شبکه های عصبی اعمال می گردد که به ادغام نتایج حاصل شده بر روی فعالیت های مبنا ترکیبی بپردازد.

مقدمه

شما با صدای ساعتتان بیدار می شوید. ساعتی که توسط شرکتی ساخته می شود تا سود خود را با مد نظر قرار دادن تخصیص بهینه منابع تحت کنترلش به حداکثربرساند. شما کتری را روشن می کنید تا قهوه ای درست کنید، بدون اینکه در مورد مدت زمان طولانی که شرکت برق برای بهینه سازی ارائه برق وسایل تان صرف می کند، فکر کنید. هزاران متغیر در شبکه برق تلاشی را به منظور به حداقل رسانی اتلاف در شبکه به منظور به حداکثر رساندن بازدهی تجهیزات برقی تان انجام می دهد. شما وارد اتومبیلتان شده وموتور را بدون درک پیچیدگی های این معجزه کوچک مهندسی شده، روشن می کنید. هزاران پارامتر توسط سازندگان مد نظر قرار داده می شود تا وسیله نقلیه ای را تحویل دهند که متناسب با انتظارتان بوده، که شامل زیبایی بدنه تا شکل آینه بغل اتومبیل می باشد تا از تصادف جلوگیری شود.

  • فرمت: zip
  • حجم: 0.34 مگابایت
  • شماره ثبت: 411

خرید

مطالب مرتبط


بررسی و مطالعه کامل داده کاوی با (SQL server 2005) پیاده سازی آن

پایان نامه دوره کارشناسی کامپیوتر : گرایش نرم افزار

چکیده

فصل اول: مقدمه ای بر داده کاوی

1-1-مقدمه

1-2-عامل مسبب پیدایش داده کاوی

1-3-داده کاوی و مفهوم اکتشاف دانش (KDD)

1-3-1-تعریف داده کاوی

1-3-2- فرآیند داده کاوی

1-3-3-قابلیت های داده کاوی

1-3-4-چه نوع داده هایی مورد کاوش قرار می گیرند؟

1-4- وظایف داده کاوی

1-1-4-کلاس بندی

1-4-2- مراحل یک الگوریتم کلاس بندی

1-4-3-انواع روش های کلاس بندی

1-4-3-1- درخت تصمیم 1-4-3-1-1- کشف تقسیمات

1-4-3-1-2- دسته بندی با درخت تصمیم

1-4-3-1-3-انواع درخت های تصمیم

1-4-3-1-4- نحو? هرس کردن درخت

1-4-3-2- نزدیکترین همسایگی K

1-4-3-3-بیزی 1-4-3-3-1 تئوری بیز

1-4-3-3-2 -دسته بندی ساده بیزی

1-4-3-4- الگوریتم های ژنتیک در فصل دو با آن آشنا می شویم

1-4-3-5-شبکه های عصبی

1-4-4- ارزیابی روش های کلاس بندی

-2-4-1پیش بینی

1-4-3-انواع روش های پیش بینی

1-4-3-1- رگرسیون

1-4-3-1 -1- رگرسیون خطی

1-4-3-1-2-رگرسیون منطقی

1-4-3- خوشه بندی

1-4-3-1- تعریف فرآیند خوشه بندی

1-4-3-2-کیفیت خوشه بندی

1-4-3-3-روش ها و الگوریتم های خوشه بندی

1-4-3-3-1-روش های سلسله مراتبی

1-4-3-3-1-1- الگوریتم های سلسله مراتبی

1-4-3-3-1-1-1-الگوریتم خوشه بندی single-linkage

1-4-3-3-2-الگوریتم های تفکیک

1-4-3-3-3-روش های متکی برچگالی

1-4-3-3-4-روش های متکی بر گرید

1-4-3-3-5-روش های متکی بر مدل

1-4-4- تخمین

1-4-4-1- درخت تصمیم

1-4-4-2- شبکه عصبی

1-4-5-سری های زمانی

1-5-کاربردهای داده کاوی

1-6-قوانین انجمنی

1-6-1-کاوش قوانین انجمنی

1-6-2-اصول کاوش قوانین انجمنی

1-6-3-اصول استقرا در کاوش قوانین انجمنی

1-6-4-الگوریتم Apriori

1-7-متن کاوی

1-7-1- مقدمه

1-7-2- فرآیند متن کاوی

1-7-3- کاربردهای متن کاوی

1-7-3-1- جستجو و بازیابی

1-7-3-2-گروه بندی و طبقه بندی داده

1-7-3-3-خلاصه سازی

1-7-3-4- روابط میان مفاهیم

1-7-3-5- یافتن و تحلیل ترند ها

1-7-3-5- برچسب زدن نحوی (POS)

1-6-2-7-ایجاد تزاروس و آنتولوژی به صورت اتوماتیک

1-8-تصویر کاوی

1-9- وب کاوی

فصل دوم: الگوریتم ژنتیک

1-2-مقدمه

2-2-اصول الگوریتم ژنتیک

2-2-1-کد گذاری

2-2-1-1-روش های کد گذاری

2-2-1-1-1-کدگذاری دودویی

2-2-1-1-2-کدگذاری مقادیر

2-2-1-1-3-کدگذاری درختی

2-2-2- ارزیابی

2-2-3-انتخاب

2-2-3-1-انتخاب گردونه دوار

2-2-3-2-انتخاب رتبه ای

2-2-3-3-انتخاب حالت استوار

2-2-3-4-نخبه گزینی

2-2-4-عملگرهای تغییر

2-2-4-1-عملگر Crossover

2-2-4-2-عملگر جهش ژنتیکی

2-2-4-3-احتمالCrossover و جهش

2-2-5-کدبرداری

2-2-6-دیگر پارامترها

2-4-مزایای الگوریتم های ژنتیک

2-5- محدودیت های الگوریتم های ژنتیک

2-6-چند نمونه از کاربرد های الگوریتم های ژنتیک

2-6-1-یک مثال ساده

فصل سوم: شبکه های عصبی

3-1-چرا از شبکه های عصبی استفاده می کنیم؟

3-2-سلول عصبی

3-3-نحوه عملکرد مغز

3-4-مدل ریاضی نرون

3-5-آموزش شبکه های عصبی

3-6-کاربرد های شبکه های عصبی

فصل چهارم: محاسبات نرم

4-1-مقدمه

4-2-محاسبات نرمچیست؟

4-2-1-رابطه

4-2-2-مجموعه های فازی

4-2-2-1-توابع عضویت

4-2-2-2- عملیات اصلی

4-2-3-نقش مجموعه های فازی در داده کاوی

4-2-3-1- خوشه بندی

4-2-3-2- خلاصه سازی دادهها

4-2-3-3- تصویر کاوی

4-2-4- الگوریتم ژنتیک

4-2-5-نقش الگوریتم ژنتیک در داده کاوی

4-2-5-1- رگرسیون

4-2-5-2-قوانین انجمنی

4-3-بحث و نتیجه گیری

فصل پنجم: ابزارهای داده کاوی

5-1- نحوه انتخاب ابزارداده کاوی

5-2-1-ابزار SPSS-Clemantine

5-2-3-ابزار KXEN

5-2-4-مدل Insightful

5-2-5-مدل Affinium

5-3- چگونه می توان بهترین ابزار را انتخاب کرد؟

5-4-ابزار های داده کاوی که در 2007 استفاده شده است

5-5-داده کاوی با sqlserver 2005

5-5-1-اتصال به سرورازمنوی

5-5-2- ایجاد Data source

5-5-3- ایجاد Data source view

5-5-4- ایجاد Mining structures

5-5-5- Microsoft association rule

5-5-6- Algorithm cluster

5-5-7- Neural network

5-5-8-Modle naive-bayes

5-5-9-Microsoft Tree Viewer

5-5-10-Microsoft-Loistic-Regression

5-5-11-Microsoft-Linear-Regression

فصل ششم: نتایج داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان

•1-6-نتایج Data Mining With Sql Server 2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان

1-6-1-Microsoft association rule

1-6-2- Algorithm cluster

1-6-3- Neural network

1-6-4- Modle naive-bayes

1-6-5-Microsoft Tree Viewer

7-1-نتیجه گیری

منابع و ماخذ

خرید

مطالب مرتبط